Geometric Tolerances

J. M. McCarthy
Fall 2003

- Overview of geometric tolerances
- Form tolerances
- Orientation tolerances
- Location tolerances
- Summary
This standard establishes uniform practices for defining and interpreting dimensions, and tolerances, and related requirements for use on engineering drawings.

The figures in this presentation are taken from Bruce Wilson’s *Design Dimensioning and Tolerancing*.
Tools for Measuring Dimensions

Dial Indicator
Micrometer
Surface Plate
Caliper
Comparator
Depth Gauge
Overview of Geometric Tolerances

Geometric tolerances define the shape of a feature as opposed to its size.

We will focus on three basic types of dimensional tolerances:

1. Form tolerances: straightness, circularity, flatness, cylindricity;
2. Orientation tolerances: perpendicularly, parallelism, angularity; and
The table outlines symbols for geometric tolerances, categorized into form, orientation, and position. The symbols are denoted with abbreviations and notes for specific parameters like diameter, radius, controlled radius, spherical diameter, spherical radius, controlled radius, spots, depth, dimension origin, square, reference, places, times, arc length, slope, conical taper, basic dimension, statistical, between, and datum feature triangle. The right side of the table lists symbols for datum feature symbol, datum target symbol, regardless of feature size, maximum material condition, least material condition, projected tolerance zone, straightness, flatness, circularity, cylindricity, perpendicularity, parallelism, angularity, position, symmetry, concentricity, circular runout, total runout, line profile, and surface profile.
A geometric tolerance is prescribed using a feature control frame. It has three components:

1. the tolerance symbol,
2. the tolerance value,
3. the datum labels for the reference frame.

Figure 2-18. Feature control frames are always read from left to right.

Figure 2-19. Whether a diameter symbol and material condition modifier are used, or omitted, depends on the desired tolerance specification and the type of feature being controlled.
Reference Frame

A reference frame is defined by three perpendicular datum planes. The left-to-right sequence of datum planes defines their order of precedence.

Figure 6-3. A datum reference frame is theoretically perfect and is made of three mutually perpendicular planes.

Figure 6-4. Datum references made in a feature control frame determine how a part is located in the datum reference frame.
Order of Precedence

The part is aligned with the datum planes of a reference frame using 3-2-1 contact alignment.

- 3 points of contact align the part to the primary datum plane;
- 2 points of contact align the part to the secondary datum plane;
- 1 point of contact aligns the part with the tertiary datum plane.

Figure 6-17. The tertiary datum plane is perpendicular to the primary and secondary planes, and is located by the tertiary datum feature on the part.
Using a Feature as a Datum

A feature such as a hole, shaft, or slot can be used as a datum.

In this case, the datum is the theoretical axis, centerline, or center plane of the feature.

The “circle M” denotes the datum is defined by the Maximum Material Condition (MMC) given by the tolerance.
Material Conditions

- Maximum Material Condition (MMC): The condition in which a feature contains the maximum amount of material within the stated limits. e.g. minimum hole diameter, maximum shaft diameter.

- Least Material Condition (LMC): The condition in which a feature contains the least amount of material within the stated limits. e.g. maximum hole diameter, minimum shaft diameter.

- Regardless of Feature Size (RFS): This is the default condition for all geometric tolerances. No bonus tolerances are allowed and functional gauges may not be used.

ANSI Y14.5M RULE #1:
A dimensioned feature must have perfect form at its maximum material condition.

This means:
- A hole is a perfect cylinder when it is at its smallest permissible diameter,
- A shaft is a perfect cylinder when at its largest diameter.
- Planes are perfectly parallel when at their maximum distance.

ANSI Y14.5M RULE #2:
If no material condition is specified, then the it is “regardless of feature size.”
Straightness of a Shaft

- A shaft has a size tolerance defined for its fit into a hole. A shaft meets this tolerance if at every point along its length a diameter measurement fall within the specified values.

- This allows the shaft to be bent into any shape. A straightness tolerance on the shaft axis specifies the amount of bend allowed.

- Add the straightness tolerance to the maximum shaft size (MMC) to obtain a “virtual condition” Vc, or virtual hole, that the shaft must fit to be acceptable.
Straightness of a Hole

- The size tolerance for a hole defines the range of sizes of its diameter at each point along the centerline. This does not eliminate a curve to the hole.

- The straightness tolerance specifies the allowable curve to the hole.

- Subtract the straightness tolerance from the smallest hole size (MMC) to define the virtual condition Vc, or virtual shaft, that must fit the hole for it to be acceptable.
Straightness of a Center Plane

- The size dimension of a rectangular part defines the range of sizes at any cross-section.
- The straightness tolerance specifies the allowable curve to the entire side.
- Add the straightness tolerance to the maximum size (MMC) to define a virtual condition Vc that the part must fit into in order to meet the tolerance.

![Diagram of straightness of a center plane](image)

Figure 5-28. Center plane flatness is tolerated by placing the feature control frame, showing a straightness tolerance, adjacent to the dimension value.

Figure 5-29. Flatness applied to control the center plane at MMC can be verified with a functional gage.
Flatness, Circularity and Cylindricity

Flatness

- The **flatness** tolerance defines a distance between parallel planes that must contain the highest and lowest points on a face.

Circularity

- The **circularity** tolerance defines a pair of concentric circles that must contain the maximum and minimum radius points of a circle.

Cylindricity

- The **cylindricity** tolerance defines a pair of concentric cylinders that must contain the maximum and minimum radius points along a cylinder.
Parallelism Tolerance

A parallelism tolerance is measured relative to a datum specified in the control frame. If there is no material condition (i.e., regardless of feature size), then the tolerance defines parallel planes that must contain the maximum and minimum points on the face.

If MMC is specified for the tolerance value:
- If it is an external feature, then the tolerance is added to the maximum dimension to define a virtual condition that the part must fit;
- If it is an internal feature, then the tolerance is subtracted to define the maximum dimension that must fit into the part.

Figure 7-6. Two planes form the boundary for a parallelism tolerance.

Figure 7-8. Parallelism can be used to control the orientation of one axis to another.
Perpendicularly

- A perpendicular tolerance is measured relative to a datum plane.
- It defines two planes that must contain all the points of the face.
- A second datum can be used to locate where the measurements are taken.

Figure 7-12: The tolerance zone for a perpendicularity tolerance on a flat surface is bounded by two planes.

Figure 7-14: A perpendicularity tolerance can be referenced to two datums.
Perpendicular Shaft, Hole, and Center Plane

- **Shaft:** The maximum shaft size plus the tolerance defines the virtual hole.
- **Hole:** The minimum hole size minus the tolerance defines the virtual shaft.
- **Plane:** The tolerance defines the variation of the location of the center plane.

Figure 7-19: The virtual condition for an external feature of size is larger than the MMC of the feature.

Figure 7-21: The virtual condition for an internal feature of size is smaller than the MMC of the feature.

Figure 7-24: An orientation tolerance applied to a rectangular feature of size controls the orientation of the center plane of the feature.
An angularity tolerance is measured relative to a datum plane. It defines a pair planes that must:

1. contain all the points on the angled face of the part, or
2. if specified, the plane tangent to the high points of the face.
Position Tolerance for a Hole

- The position tolerance for a hole defines a zone that has a defined shape, size, location and orientation.
- It has the diameter specified by the tolerance and extends the length of the hole.
- Basic dimensions locate the theoretically exact center of the hole and the center of the tolerance zone.
- Basic dimensions are measured from the datum reference frame.
Material Condition Modifiers

RFS

If the tolerance zone is prescribed for the maximum material condition (smallest hole). Then the zone expands by the same amount that the hole is larger in size. Use MMC for holes used in clearance fits.

MMC

No material condition modifier means the tolerance is “regardless of feature size.” Use RFS for holes used in interference or press fits.
Position Tolerance on a Hole Pattern

A composite control frame signals a tolerance for a pattern of features, such as holes.

- The first line defines the position tolerance zone for the holes.
- The second line defines the tolerance zone for the pattern, which is generally smaller.
A datum specification for the pattern only specifies the orientation of the pattern tolerance zones.

Figure 9-5. Omitting all datum references from the second line releases all orientation requirements from the feature relating tolerance. The second line of the composite tolerance only controls feature-to-feature locations.

No datum for the pattern

Primary datum specified.
Summary

Geometric tolerances are different from the tolerances allowed for the size of feature, they specify the allowable variation of the shape of a feature.

There are three basic types of geometric tolerances: Form, Orientation and Position tolerances.

Geometric tolerances are specified using a control frame consisting of a tolerance symbol, a tolerance value and optional datum planes.

Material condition modifiers define the condition at which the tolerance is to be applied. If the maximum material condition is specified, then there is a “bonus tolerance” associated with a decrease in material.

1. The form of a feature is assumed to be perfect at its maximum material condition.
2. If no material condition is specified, then it is regard less of feature size.